Top (and bottom-quark) production asymmetries at the Tevatron

Ziqing Hong
Texas A&M University
On behalf of the CDF/D0 collaborations

Top at Twenty Workshop Apr. 9, 2015

Outline

- $t\bar{t}$ forward–backward asymmetry
 - Complementary measurements at the Tevatron and the LHC
 - Some comments on why this has been a hot topic in the last few years
- ullet $A_{\mathsf{FB}}^{tar{t}}$ measurements based on top reconstruction
- ullet A_{FB}^ℓ and $A_{\mathsf{FB}}^{\Delta\eta}$ measurements based on leptons
- ullet $bar{b}$ asymmetry measurements
- Conclusions

Forward-backward asymmetry

- $p\bar{p}$ collision at Tevatron
- A_{FB} measurements are simply answering:
 Does the top quark prefer the proton direction or the opposite?

Complementarity between the Asymmetry at the Tevatron and the LHC

(b)

- LHC dominated by gluon fusion (90%, b)
 Sizeable effect at Tevatron, very small
- asymmetry (central vs. outer) at LHC

For details about asymmetry measurements at LHC, see next talk

annihilation (85%, a)

A_{FB} at Tevatron: Why important?

Why this is important?

- No net asymmetry in leading order diagram
 - Asymmetry only from higher order effects
- Slight asymmetry starting from next-to-leading order (NLO) effects
 - Interference among diagrams
- Non-negligible EW correction and higher order QCD corrections complicate the calculation
 - Details in Alex Mitov's talk for NNLO calculation
- Precision probe of SM production predictions with large mass particles

A_{FB} at Tevatron: Why interesting?

Why this is interesting?

- First set of measurements showed larger-than-SM values
- Higher than SM asymmetry leaves room for various beyond-SM models
 - s-channel axigluon, t-channel W',
 Z', etc.
- Need to squeeze every drop from Tevatron data to understand this potential anomaly

$t\overline{t}$ forward-backward asymmetry

All results shown based on full Tevatron run II da

Ways to measure asymmetry

Three categories of asymmetry measurements

- Fully reconstructed top quarks
 - Can measure asymmetry of top rapidity
 - More details from the cross section as a function of production angle
- Top leptonic asymmetry and lepton pair asymmetry
 - A cleaner measurement from the leptons from top cascade decays
- A_{FB} in $b\bar{b}$ production
 - An independent test of the same SM dynamics, and also potentially look for new physics

 $A_{\mathsf{FE}}^{tar{t}}$

 A_{FB} measurement based on top reconstruction

Definition of $A_{FB}^{t\bar{t}}$

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

$$\Delta y = y_t - y_{\bar{t}}$$

$$ar{ar{\mathsf{p}}(ar{\mathsf{q}},\mathsf{g})} A_{\mathsf{FB}}^{tar{t}} = rac{\mathsf{N}(\Delta y > 0) - \mathsf{N}(\Delta y < 0)}{\mathsf{N}(\Delta y > 0) + \mathsf{N}(\Delta y < 0)}$$

- NLO predictions from 0.05 to 0.125 (arxiv:1406.1798 and refs therein)
- One NNLO QCD prediction: $A_{\rm FB}^{t\bar{t}} = 0.095 \pm 0.007$ (arxiv:1411.3007)
- All results shown are unfolded back to parton level, to be directly compared with theoretical predictions

$A_{\text{FB}}^{t\bar{t}}$: CDF lepton+jets

$$A_{\rm FB}^{t\bar{t}} = 0.164 \pm 0.039 ({\rm stat}) \pm 0.026 ({\rm syst})$$

- Top reconstruction based only on kinematics
- Unfolding based on singular value decomposition (SVD)
- Predictions on plots at NLO (predate NNLO predictions)
- ullet Inclusive A_{FB}^{tt} 1.5σ higher than NNLO
- Differential asymmetries show 2.8σ ($|\Delta y|$) and 2.4σ ($m_{t\bar{t}}$) differences w.r.t. NLO SM

PRD 87, 092002 (2013)

$A_{FB}^{t\bar{t}}$: D0 lepton+jets

$$A_{\rm FB}^{t\bar{t}} = 0.106 \pm 0.030$$

- New kinematic fitter (NIM A 736 (2014) 169)
- Including lepton+3 jets channel with partial reconstruction
- \bullet Unfolding implemented with $TU{
 m NFOLD}$
- Inclusive A_{FB} agrees with NNLO SM
- A_{FB} vs. $|\Delta y|$ rises above NLO prediction
 - Same trend as in CDF lepton+jets
- Good agreement in A_{FB} vs. $m_{t\bar{t}}$

PRD 90, 072011 (2014)

$A_{\rm FB}^{t\bar{t}}$: D0 dilepton

$$A_{\sf FB}^{t\bar{t}} = 0.180 \pm 0.069 ({
m tot.}) \pm 0.051 ({
m model})$$

- Top reconstruction based on matrix-element (ME) technique
- Calibration with MC reweighting for parton-level asymmetry
- Consistent with SM prediction and CDF/D0 lepton+jets results
- Not enough power to measure differential A_{FB}

D0 note 6445-CONF

$$a_1(\text{obs}) = 0.40 \pm 0.12 \text{ w/ } a_1(\text{pred}) = 0.15^{+0.07}_{-0.03}$$

- Characterize the differential cross section with Legendre polynomials $\frac{d\sigma}{d\cos\theta_t} = \Sigma_\ell a_\ell P_\ell(\cos\theta_t)$
- Good agreement with NLO SM prediction except a_1 (the linear term)
- 2.1σ excess in a_1 from NLO SM
- Naively favors models with strong s-channel components

PRL 111, 182002 (2013)

Legendre degree (ℓ)

• Next: $A_{\rm FB}$ measurements based on leptons from top decays: $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\Delta\eta}$

A_{FB}^ℓ and $A_{\mathsf{FB}}^{\Delta\eta}$

Leptonic A_{FB}

$$A_{\mathsf{FB}}^\ell = rac{ \mathsf{N}(q_\ell \eta_\ell > 0) - \mathsf{N}(q_\ell \eta_\ell < 0)}{ \mathsf{N}(q_\ell \eta_\ell > 0) + \mathsf{N}(q_\ell \eta_\ell < 0)}$$

- Also lepton pair $A_{\rm FB}$ defined with lepton η difference, only in dilepton
 - Lepton angles precisely measured
 - Tend to follow direction of parent tops
 - Also carry information about top spin
- $A_{FB}^{\ell}(NLO, SM) = 0.038 \pm 0.003$ $A_{FB}^{\Delta\eta}(NLO, SM) = 0.048 \pm 0.004$ PRD 86, 034026 (2012)

A_{FB}^{ℓ} : CDF lepton+jets & dilepton

$$\begin{array}{c} \textit{A}_{FB}^{\ell}(L+J) = 0.094^{+0.032}_{-0.029} \,\&\, \textit{A}_{FB}^{\ell}(DIL) = 0.072 \pm 0.060 \\ \textit{A}_{FB}^{\ell}(CDF) = 0.090^{+0.028}_{-0.026} \end{array}$$

- Differential asymmetry $(A_{\sf FB}^\ell(q_\ell\eta_\ell))$ is best sensitive observable
- Corrected for detector effects
- Parton-level measurement based on $a \cdot \tanh(\frac{1}{2}q_\ell\eta_\ell)$ modeling of $A_{\sf FB}^\ell(q_\ell\eta_\ell)$
 - Methodology validated in PRD 90, 014040 (2014)
- CDF combination based on BLUE
- \bullet 2 σ higher than NLO SM

PRD 88, 072003 (2013) PRL 113, 042001 (2014)

1.5

A_{ER}^{ℓ} : D0 lepton+jets & dilepton

$$A_{\mathsf{FB}}^{\ell}(\mathrm{L}+\mathrm{J}) = 0.050_{-0.037}^{+0.034} \& A_{\mathsf{FB}}^{\ell}(\mathrm{DIL}) = 0.044 \pm 0.039$$

 $A_{\mathsf{FB}}^{\ell}(\mathrm{D0}) = 0.047 \pm 0.027$

- Including lepton + 3 jets in L+J measurement
- Detector effect corrected with bin-by-bin correction
- Parton-level extrapolation based on MC-derived multiplication
- D0 combination based on BLUE
- Consistent with NLO SM

CDF Run II Preliminary (9.1 fb⁻¹)

$$A_{\text{FB}}^{\Delta\eta}(\text{CDF}) = 0.076 \pm 0.082 \& A_{\text{FB}}^{\Delta\eta}(\text{D0}) = 0.123 \pm 0.056$$

- CDF measurement based on $a \cdot \tanh(\frac{1}{2}\Delta\eta)$ modeling of differential asymmetry $(A_{\rm FB}^{\Delta\eta}(\Delta\eta))$
- D0 measurement based on bin-by-bin correction and MC-derived extrapolation
- Both results consistent with NLO SM
- A_{FR}^{ℓ} and $A_{\mathsf{FR}}^{\Delta\eta}$ correlated

PRL 113, 042001 (2014) PRD 88, 112002 (2013) $b \bar b$ asymmetry

- If the $t\bar{t}$ production asymmetry is indeed non-SM, there is good reason to believe there should be observable effects in $b\bar{b}$ asymmetry
- ullet Sensitive to axigluon hypothesis below $tar{t}$ threshold
- Next: Present three measurements of $A_{\rm FB}^{bb}$ using three different techniques
 - High mass $A_{\sf FB}^{bar{b}}$ ($m_{bar{b}} > 150 {
 m GeV/c^2}$) using jet charge techniques (CDF)
 - Low mass $A_{\rm FB}^{bb}$ $(m_{b\bar b}>40{
 m GeV/c^2})$ using soft muon tags (CDF)
 - $A_{\rm FB}(B^\pm)$ with $B^\pm \to J/\psi(\to \mu^+\mu^-)K^\pm$ (D0)

- Use momentum-weighted track charge sum to differentiate between b and \bar{b}
- Measure $A_{\rm FB}^{b\bar b}$ in three $b\bar b$ mass bins: [150, 225], [225, 325] and [325, ∞)
- Use Bayesian techniques to extract hadron-jet level asymmetry
- Result consistent with SM prediction
- ullet Exclude 200 ${
 m GeV/c^2}$ axigluon models

CDF Note 11092

- Require a muon inside one b-jet and use it to identify quark charge
- Measure $A_{\rm FB}^{b\bar{b}}$ in four $b\bar{b}$ mass bins: [40, 75], [75, 95], [95, 130], and [130, ∞)
- Use SVD for unfolding
- Result consistent with SM prediction, even some indication that we can see the electroweak A_{FB} at the Z pole

CDF Note 11156

$A_{\mathsf{FB}}(B^{\pm})$

$$A_{\sf FB}(B^\pm) = -0.24 \pm 0.41({\sf stat}) \pm 0.19({\sf syst})$$

- Reconstruct $B^\pm \to J/\psi K^\pm$ where $J\psi \to \mu^+\mu^-$
- ullet B meson collinear with $b(ar{b})$ quark
- ullet Very low $m_{bar{b}}$ scale
- Use unbinned max likelihood fit to extract $A_{FB}(B^{\pm})$
- Result consistent with zero asymmetry
- $\bullet \sim 3\sigma$ deviation from MC@NLO
- Suspect deficiency in MC@NLO

PRL 114, 051803 (2015)

Top (bottom) A_{FB} at Tevatron: Sum

- Results from D0 consistent with SM predictions
- CDF inclusive $A_{\rm FB}$ slightly higher than predictions (1.5 σ), differential $A_{\rm FB}$ higher than predictions at 2σ level
- All results higher than quoted SM calculations
- Last measurement from CDF dilepton channel nearing completing
- Expect final Tevatron combination soon
- No anomaly shown in $b\bar{b}$ asymmetry

Conclusions

- Has been an exciting chase for new physics, also spurred development of theory techniques
- Motivated $A_{\rm FR}^{b\bar{b}}$ measurement
- \bullet Nearly completed the legacy A_{FB} measurements for top and bottom quarks at the Tevatron
 - ullet CDF dilepton channel $A_{\mathsf{FB}}^{tar{t}}$ done soon
- Tevatron combination of $A_{\rm FB}^{t\bar{t}}$, $A_{\rm FB}^{\ell}$ and $A_{\rm FB}^{\Delta\eta}$ in progress and expected to be the final word from the Tevatron on this important topic

CDF & D0 Top Public Webpages

Top Public Webpages

- CDF: http://www-cdf.fnal.gov/physics/new/top/top.html
- D0: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

Thank you for your attention and thanks to the organizers for their kind hospitality

Backup Slides

Backup slides

Differential A_{FB} at Tevatron

ullet Differential A_{FB} show mostly good agreement between CDF and D0 measurements, but some areas under study

